

**SHC-HKASLD HBV webinar series**  
**14<sup>th</sup> September 2020**



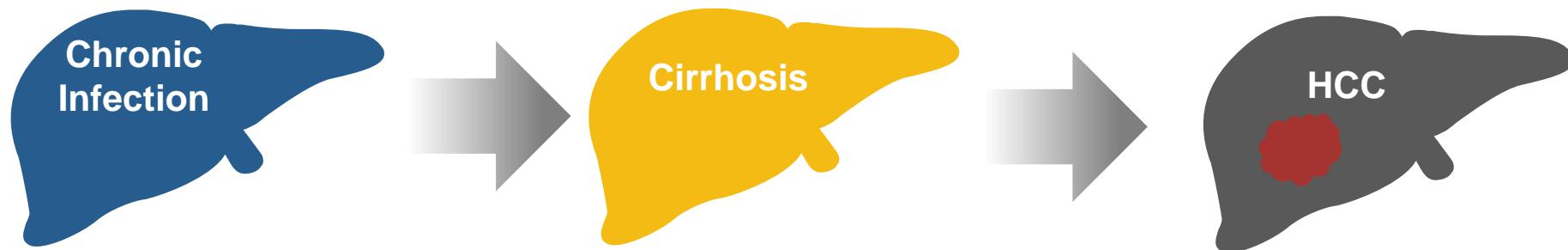
# **Does antiviral therapy reduce HCC in chronic hepatitis B?**

**Dr. Grace Lai-Hung Wong**

MBChB (Hons, CUHK), MD (CUHK), FRCP(Lond, Edin), FHKCP, FHKAM (Medicine)

Director, CUHK Medical Data Analytics Centre (MDAC)

Professor, Institute of Digestive Disease  
The Chinese University of Hong Kong


# Reducing the risk of HCC is the primary goal in managing patients with chronic hepatitis B (CHB)



To improve survival and quality of life by preventing disease progression, and reducing complications including HCC<sup>1-4</sup>

1. Terrault NA, et al. Update on Prevention, Diagnosis, and Treatment and of Chronic Hepatitis B: AASLD 2018 Hepatitis B Guidance.
2. EASL. J Hepatol. 2017 Aug;67(2):370-398.
3. Sarin SK, et al. Hepatol Int. 2016 Jan;10(1):1-98.
4. Chien RN, et al. Taiwan Consensus Statement on the Management of Chronic Hepatitis B. J Formos Med Assoc. 2019 Jan;118:7-38.

# Reducing HCC risk requires long-term effective antiviral therapy



Continued inhibition of viral replication by antiviral therapy, can eliminate chronic HBV-induced necrotic inflammatory activity and progression of liver fibrosis, and may correspondingly reduce HCC risk



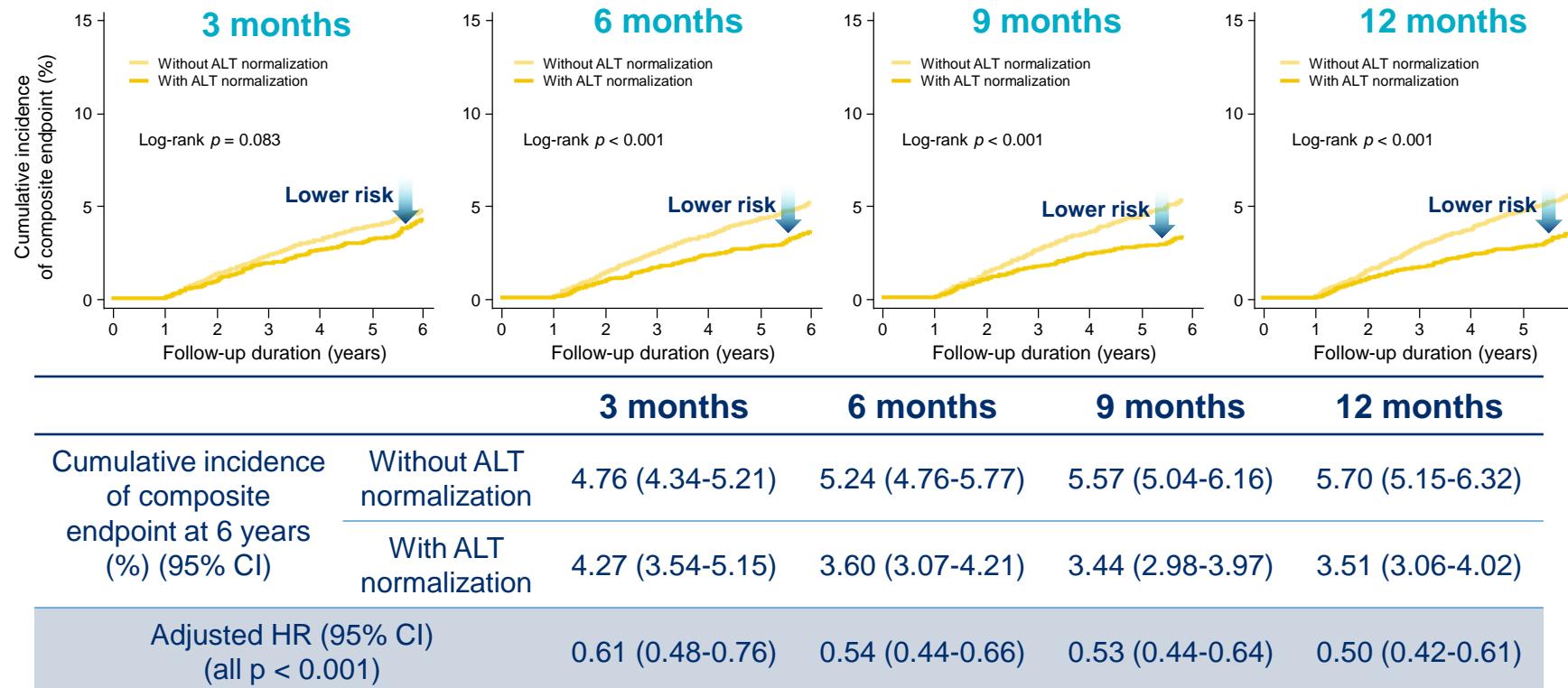
Long-term treatment with NAs can bring benefits from reduced HCC risk



Regardless of the severity of liver disease, long-term treatment should be initiated with a NUC that provides high genetic barrier to resistance<sup>2</sup>

EASL. J Hepatol. 2017 Aug;67(2):370-398.

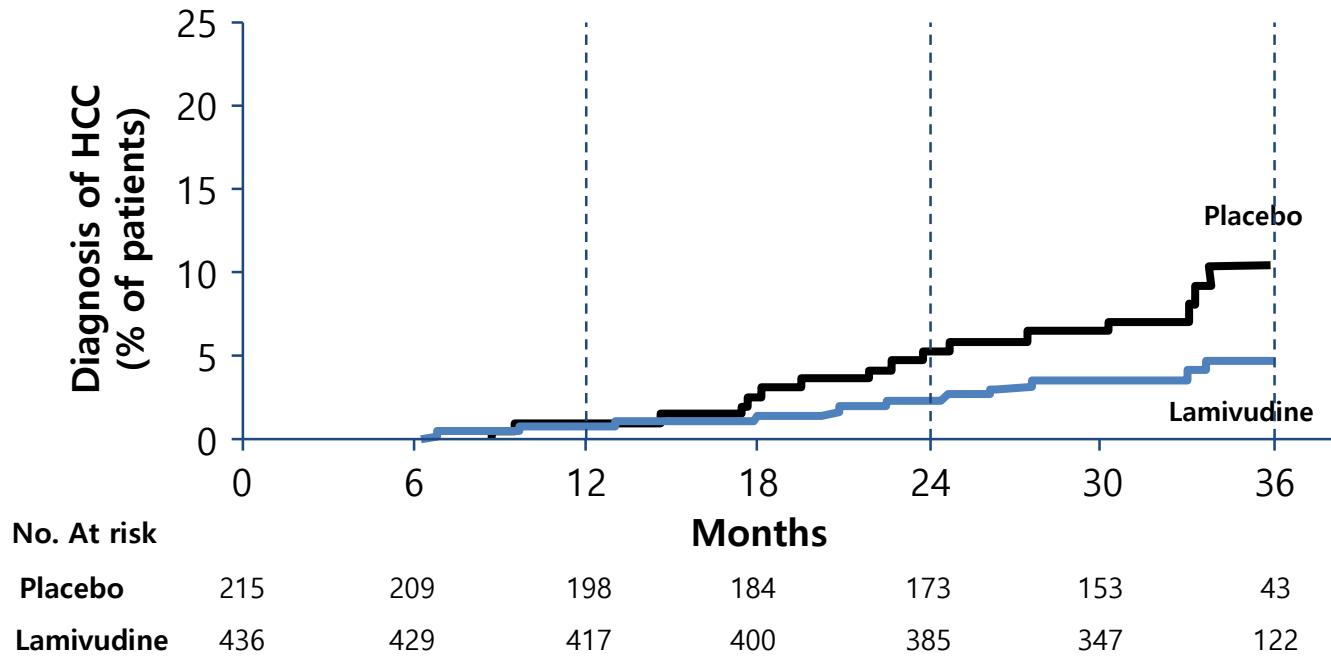



香港中文大學  
The Chinese University of Hong Kong



香港中文大學醫學院  
Faculty of Medicine  
The Chinese University of Hong Kong

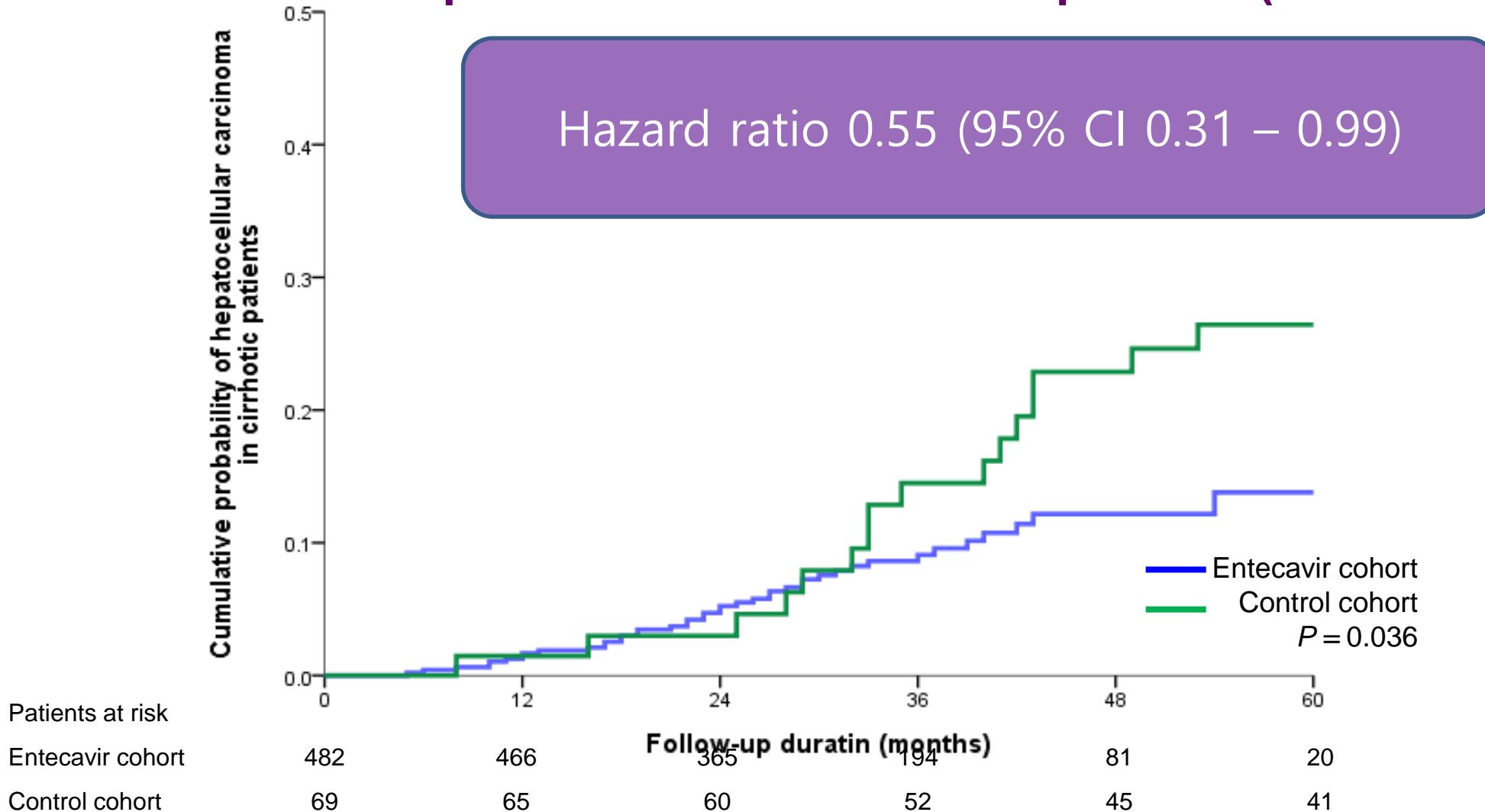
# ALT normalization is associated with reduced risk of HCC


Kaplan-Meier analysis of the cumulative incidence of HCC or hepatic events according to normalization of ALT after antiviral treatment



Normal on-treatment ALT during the 1<sup>st</sup> year of treatment in patients with CHB is associated with a lower risk of hepatic events.

ALT, alanine aminotransferase; CHB, chronic hepatitis B; HCC, hepatocellular carcinoma; CI, confidence interval; HR, hazard ratios.


# The first study of antiviral therapy lowering HCC risks

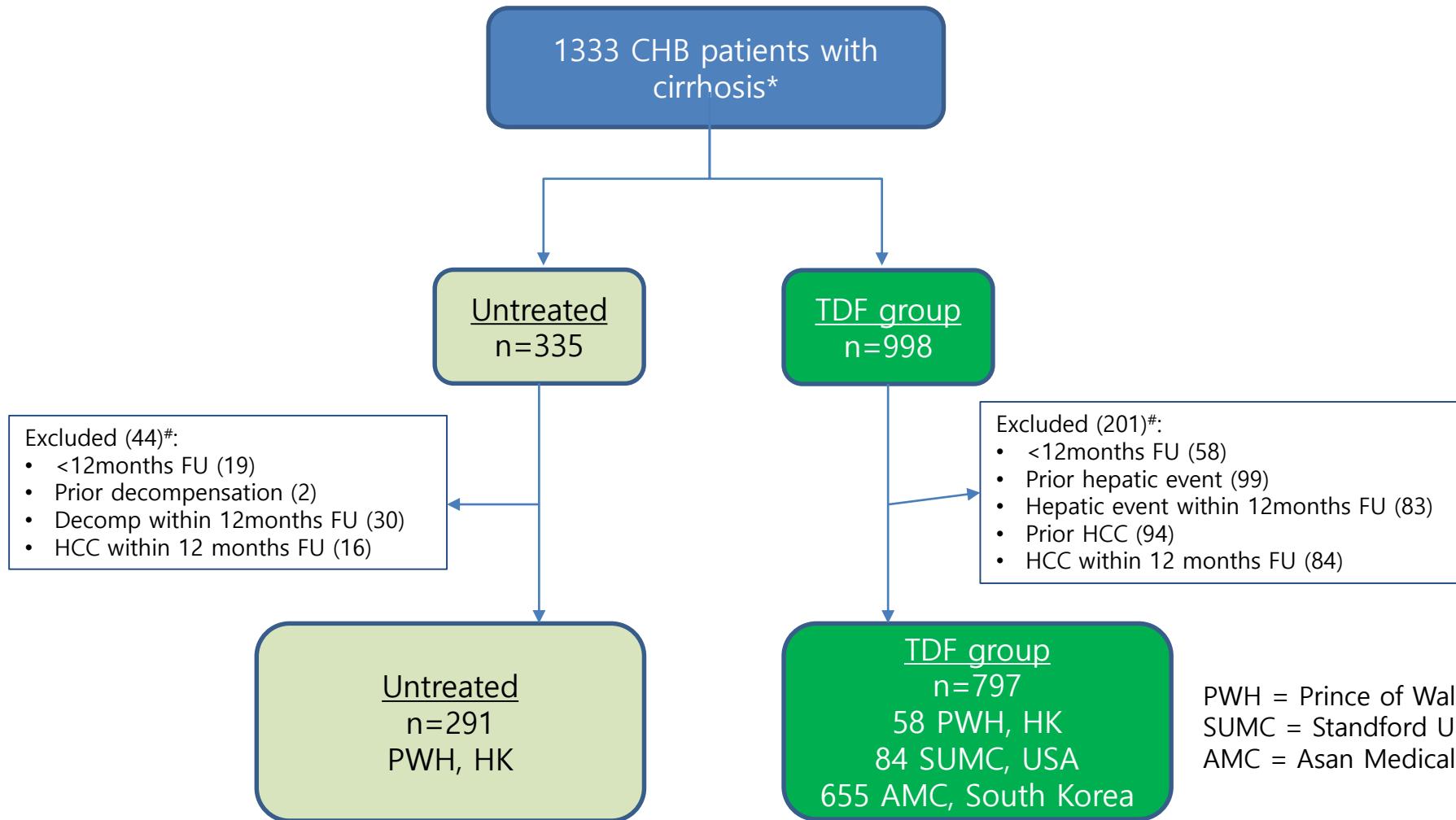


HCC occurred in 3.9% of lamivudine-treated group, versus 7.4% of the placebo group (HR=0.47; p=0.047)

# Entecavir therapy reduces HCC in cirrhotic patients

1,466 entecavir-treated patients vs. 424 untreated patients (historical control)




香港中文大學  
The Chinese University of Hong Kong



香港中文大學醫學院  
Faculty of Medicine  
The Chinese University of Hong Kong

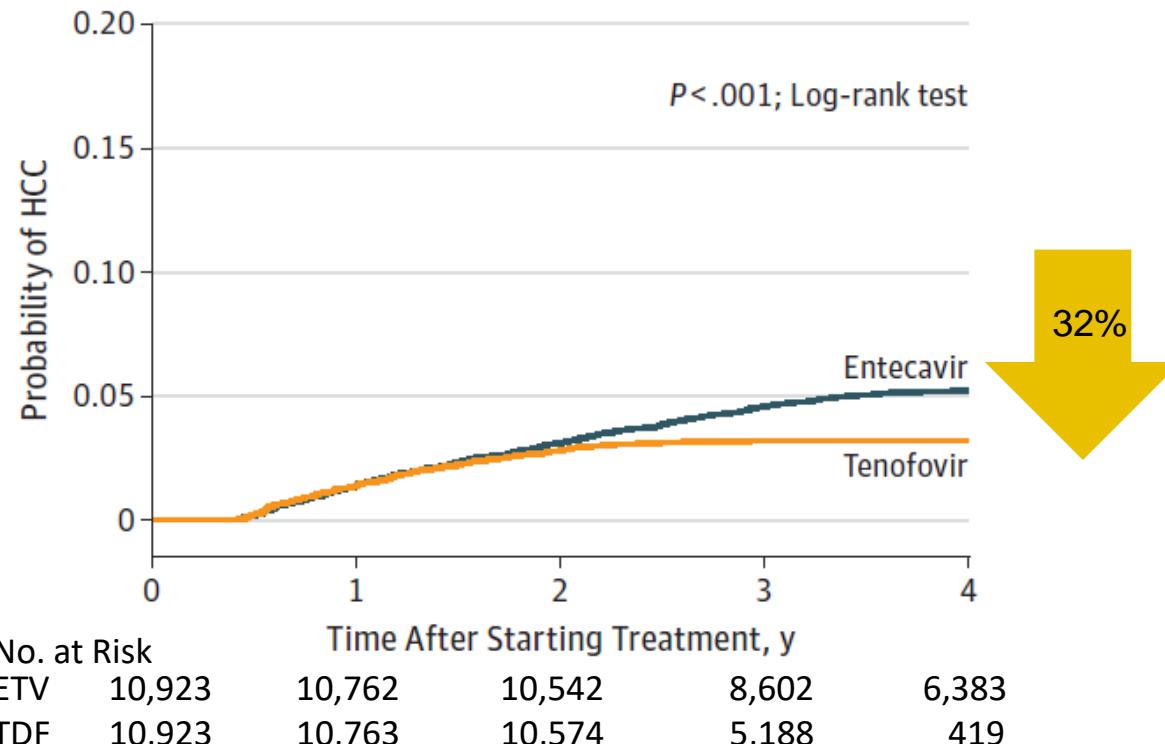
Wong GL, et al. Hepatology 2013;58:1537–1547.

# Lower HCC Risk / Hepatic events with TDF vs untreated patients in a multicenter study (Hong Kong, Korea, the US)

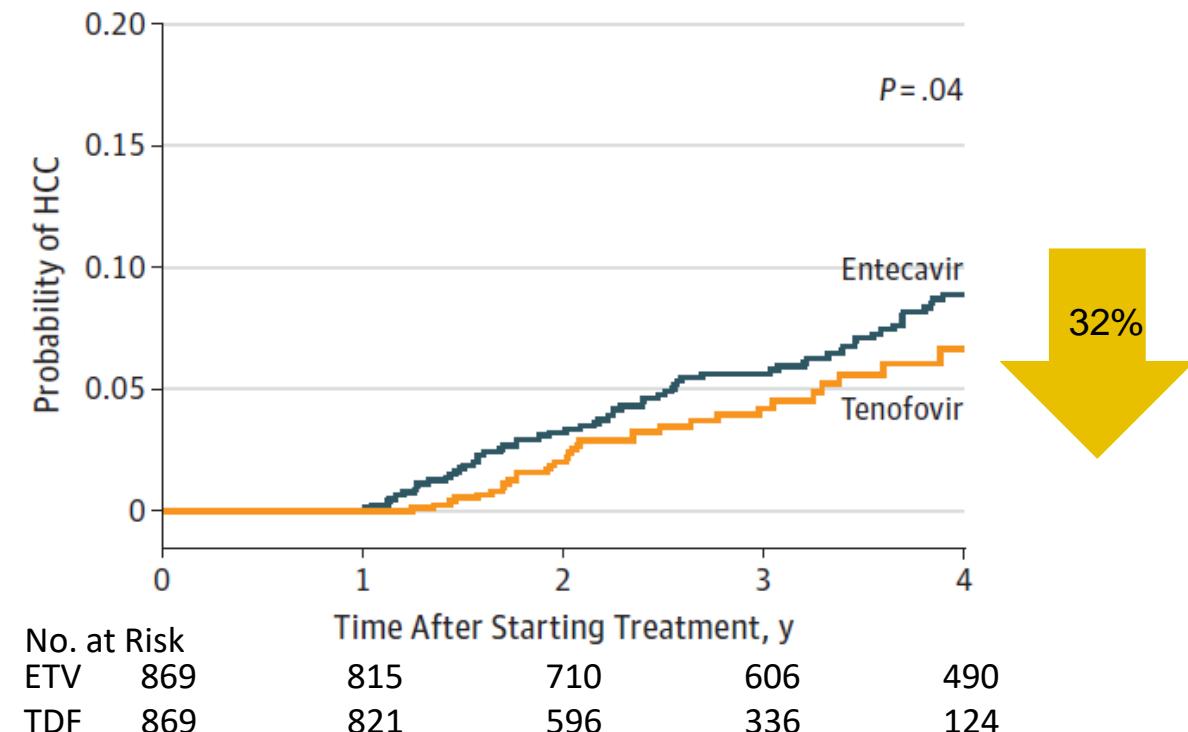


PWH = Prince of Wales Hospital, Hong Kong  
SUMC = Standford University Medical Center, USA  
AMC = Asan Medical Centre, South Korea

# Cumulative events after 5 years


|                                                                          | All<br>n (%)      | Untreated<br>n (%) | TDF<br>n (%)    |
|--------------------------------------------------------------------------|-------------------|--------------------|-----------------|
| <b>HCC (n=1,088)</b>                                                     | <b>112 (10.3)</b> | <b>41 (14.1)</b>   | <b>71 (8.9)</b> |
| <b>Decompensating events<br/>(PWH and SUMC patients<br/>only, n=433)</b> | <b>70 (16.2)</b>  | <b>63 (21.6)</b>   | <b>7 (4.9)</b>  |
| New ascites                                                              | 61 (14.1)         | 56 (19.2)          | 5 (3.5)         |
| Spontaneous bacterial peritonitis                                        | 17 (3.9)          | 15 (5.2)           | 2 (1.4)         |
| Hepatic encephalopathy                                                   | 21 (4.8)          | 18 (6.2)           | 3 (2.1)         |
| Variceal bleeding                                                        | 14 (3.2)          | 12 (4.1)           | 2 (1.4)         |
| Hepatorenal syndrome                                                     | 3 (0.7)           | 3 (1.0)            | 0 (0)           |
| <b>Liver Transplant or Death (n=1,088)</b>                               | <b>43 (4.0)</b>   | <b>36 (12.4)</b>   | <b>7 (0.9)</b>  |
| Liver transplant                                                         | 7 (0.6)           | 4 (1.4)            | 3 (0.4)         |
| All-cause death                                                          | 36 (3.3)          | 32 (11.0)          | 4 (0.5)         |
| Liver-related death                                                      | 25 (2.3)          | 21 (7.2)           | 4 (0.5)         |

| HCC                                         | HR           | 95% CI             | P                |
|---------------------------------------------|--------------|--------------------|------------------|
| <b>TDF (y vs n)</b>                         | <b>0.462</b> | <b>0.286-0.746</b> | <b>0.002</b>     |
| Albumin (per g/L inc)                       | 0.933        | 0.900-0.967        | <0.001           |
| Decompensation                              | HR           | 95% CI             | P                |
| <b>TDF (y vs n)</b>                         | <b>0.282</b> | <b>0.105-0.761</b> | <b>0.012</b>     |
| Platelet count (per 10 <sup>9</sup> /L inc) | 0.992        | 0.984-0.999        | 0.039            |
| INR (per unit inc)                          | 9.238        | 2.147-39.739       | 0.003            |
| Albumin (per g/L inc)                       | 0.908        | 0.849-0.971        | 0.005            |
| Liver death                                 | HR           | 95% CI             | P                |
| <b>TDF (y vs n)</b>                         | <b>0.103</b> | <b>0.040-0.269</b> | <b>&lt;0.001</b> |
| Platelet count (per 10 <sup>9</sup> /L inc) | 0.982        | 0.971-0.993        | 0.001            |
| Albumin (per g/L inc)                       | 0.873        | 0.810-0.941        | <0.001           |
| All cause death                             | HR           | 95% CI             | P                |
| <b>TDF (y vs n)</b>                         | <b>0.026</b> | <b>0.008-0.090</b> | <b>&lt;0.001</b> |
| INR (per unit inc)                          | 26.362       | 5.568-124.81       | <0.001           |




# Lower HCC Risk with TDF vs ETV In Korean CHB Patients: Propensity Score-Matched

HCC in propensity score-matched nationwide cohort



HCC in propensity score-matched hospital validation cohort



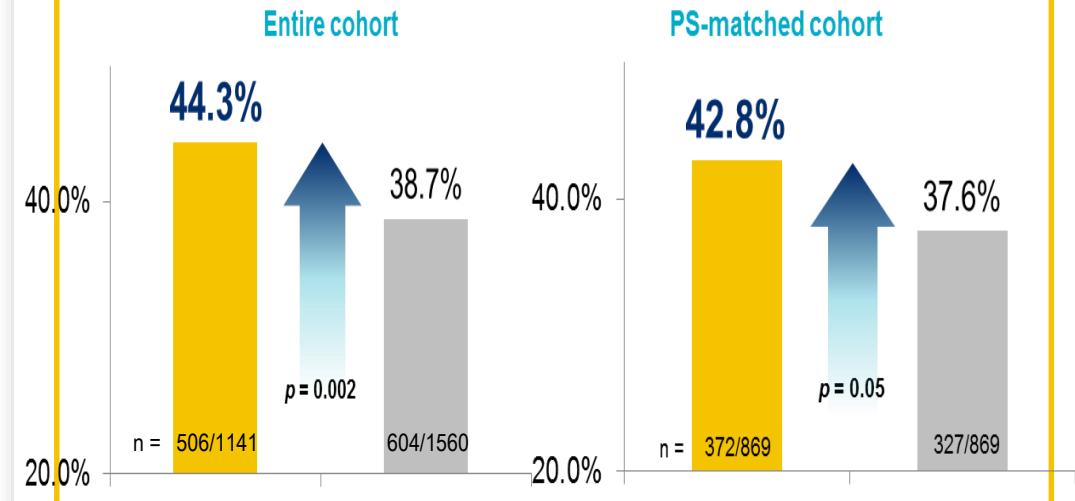
The annual incidence of HCC was significantly lower in the TDF group\* compared to the ETV group (HR 0.68;  $p < 0.001$ )<sup>#</sup>

\*The annual incidence of HCC was significantly lower in both cirrhotic and non-cirrhotic patients who used TDF compared to those on ETV; #Treatment with TDF and ALT levels were significantly associated with the lower risk of HCC while old age, male sex, presence of diabetes and cirrhosis were significantly associated with higher risk of HCC



香港中文大學  
The Chinese University of Hong Kong




香港中文大學醫學院  
Faculty of Medicine  
The Chinese University of Hong Kong

Choi J, et al. JAMA Oncol 2019 Jun 1;5(6):916-917

# Higher rate of surrogate endpoints with TDF vs ETV in hospital validation cohort

The proportion of patients with ALT level\* normalization was significantly higher in the TDF group compared with ETV group

## ALT normalization at 1 year in the validation hospital cohort

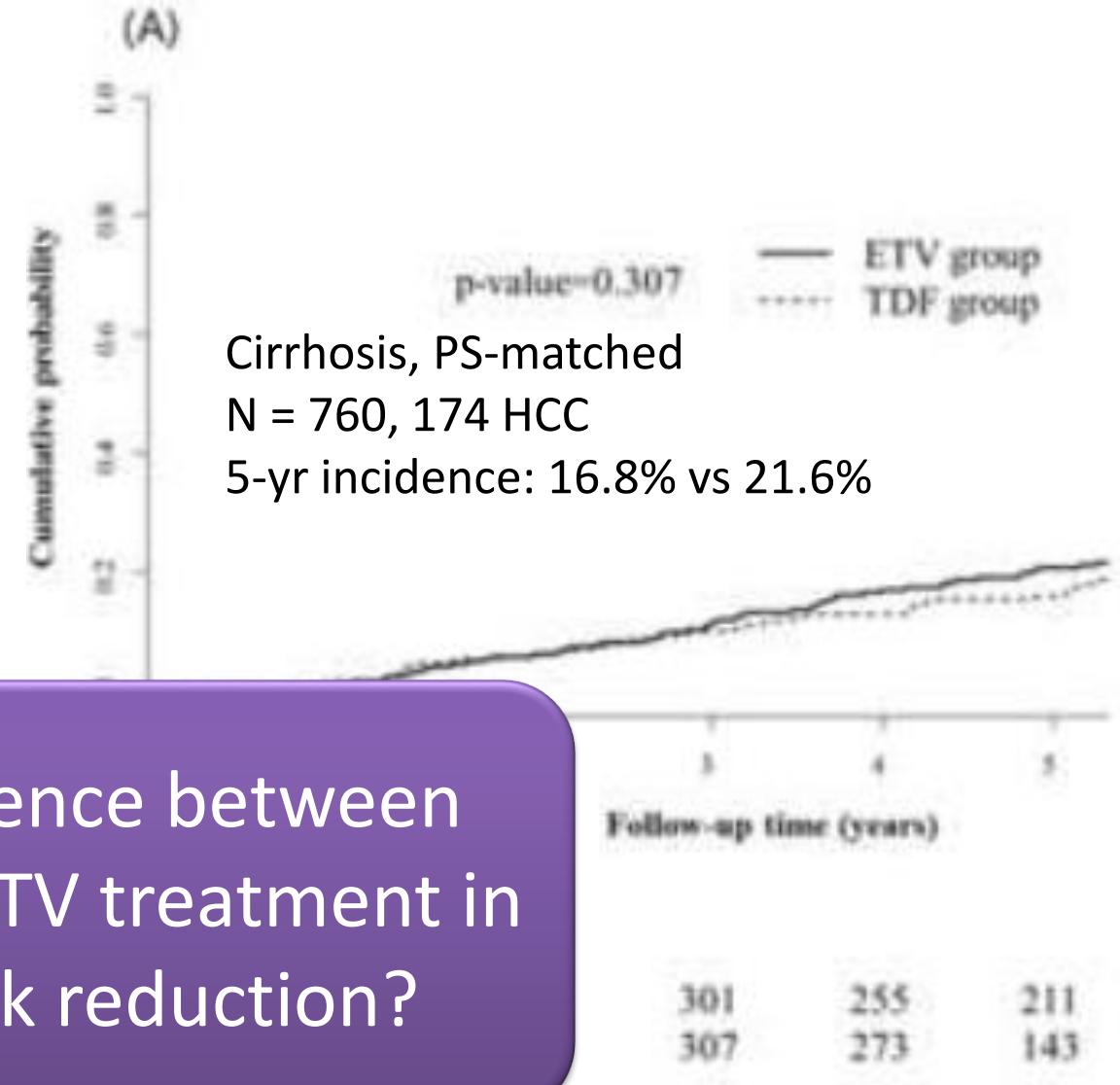
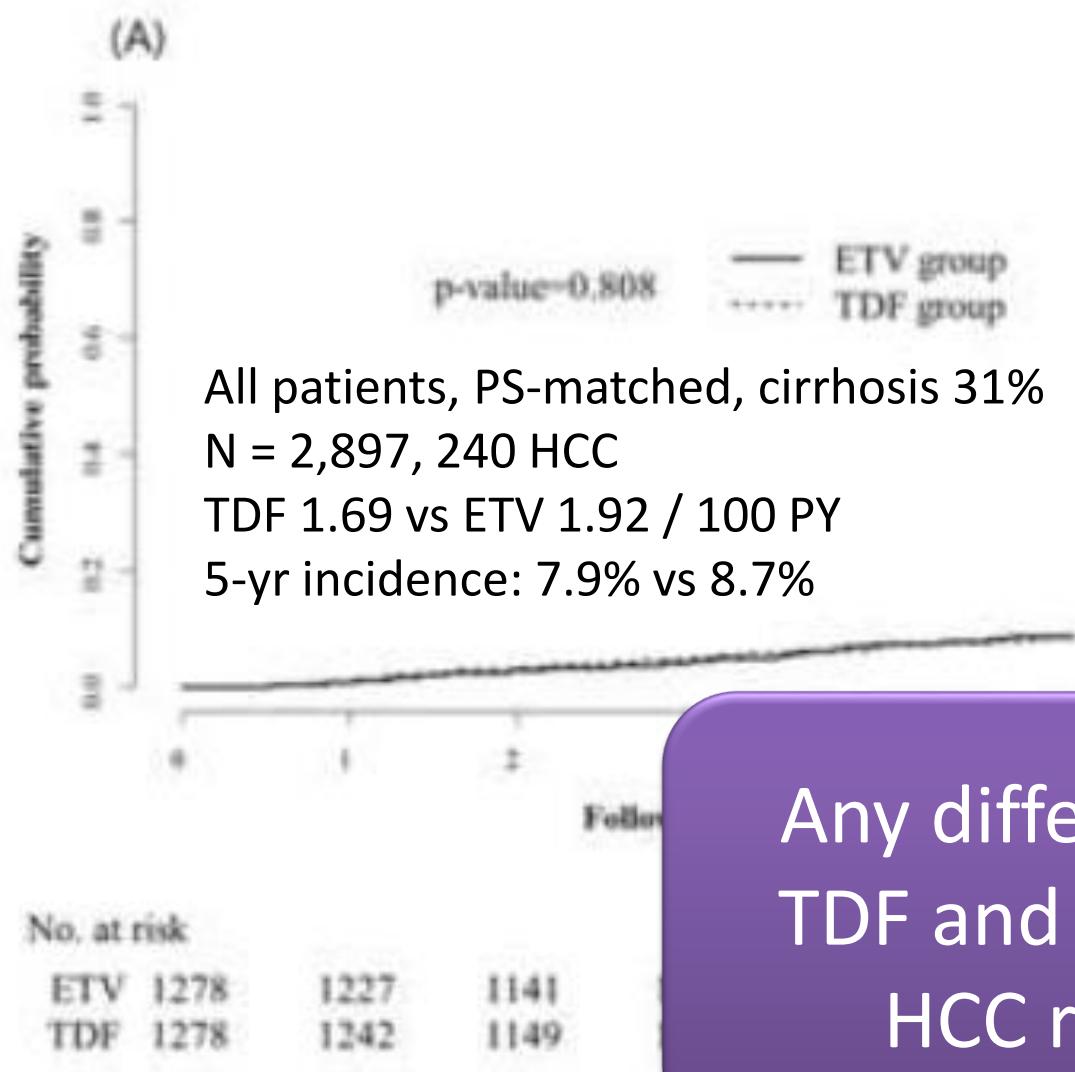


\* ALT  $\leq$  30 IU/mL for male and ALT  $\leq$  19 IU/mL for female.

By multivariable analysis showed that ALT was a risk of HCC

| Variables                                | Hepatocellular carcinoma<br>(Competing risk analysis) |                  |             |
|------------------------------------------|-------------------------------------------------------|------------------|-------------|
|                                          | HR                                                    | 95% CI           | P value     |
| Treatment with TDF                       | 0.66                                                  | 0.46-0.96        | 0.03        |
| Age                                      | 1.04                                                  | 1.02-1.06        | <0.001      |
| Male sex                                 | 2.54                                                  | 1.73-3.73        | <0.001      |
| <b>ALT, <math>\log_{10}</math> IU/mL</b> | <b>0.79</b>                                           | <b>0.63-0.99</b> | <b>0.04</b> |
| Diabetes mellitus                        | 1.79                                                  | 1.12-2.87        | 0.02        |





香港中文大學  
The Chinese University of Hong Kong



香港中文大學醫學院  
Faculty of Medicine  
The Chinese University of Hong Kong

Choi J, et al. JAMA Oncol 2019 Jun 1;5(6):916-917

# Korean multicenter study (four territory centers)

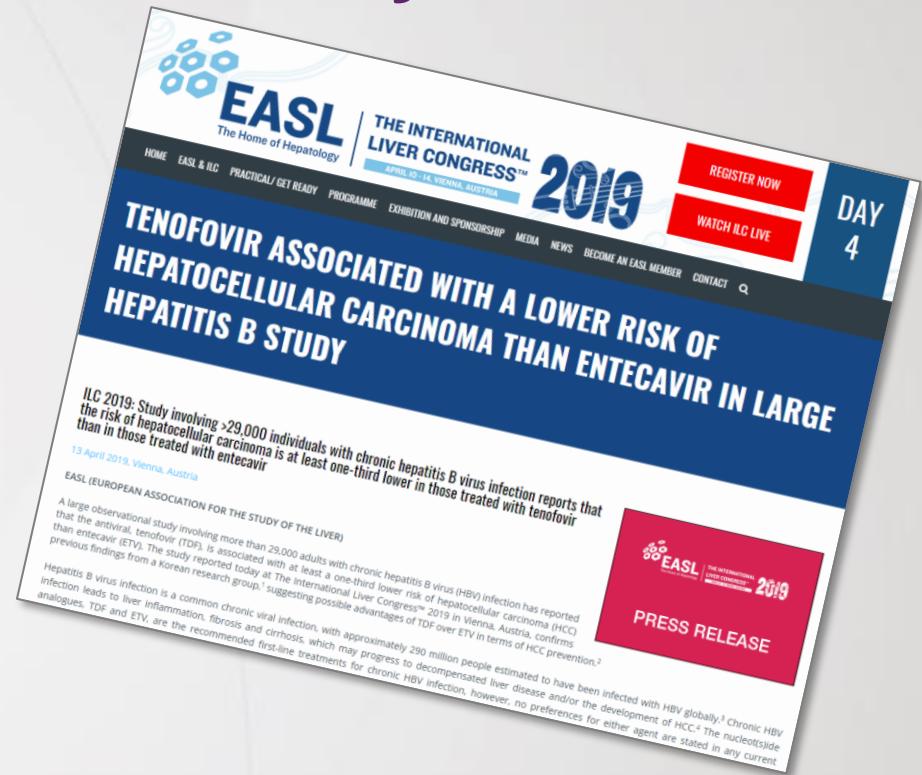


Any difference between  
TDF and ETV treatment in  
HCC risk reduction?



香港中文大學  
The Chinese University of Hong Kong




香港中文大學醫學院  
Faculty of Medicine  
The Chinese University of Hong Kong

Kim SU, et al. J Hepatol 2019 2019 Sep;71(3):456-464.

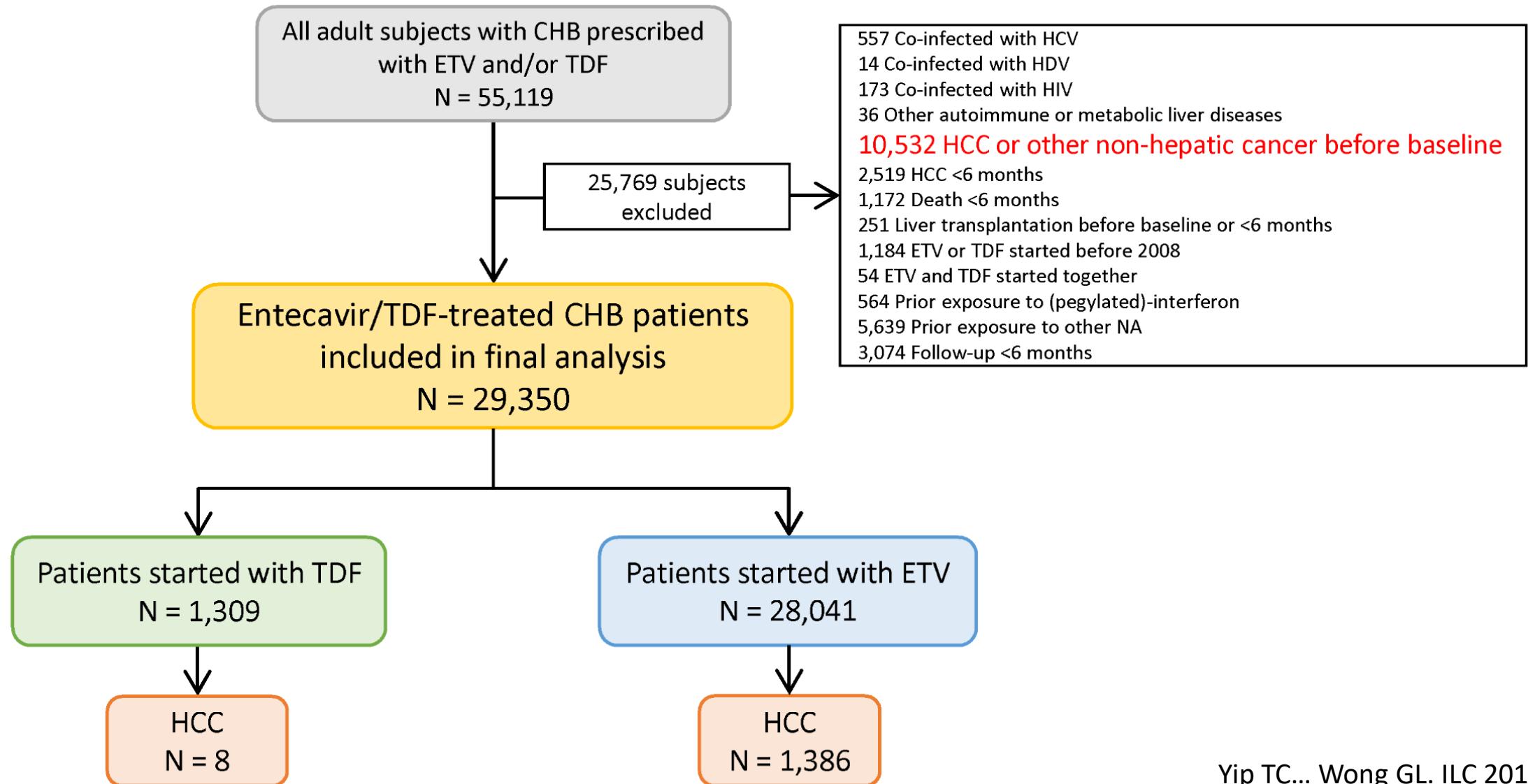
# EASL Press Release: TDF Associated With A Lower Risk Of HCC Than ETV In Large Hepatitis B Study

“Tenofovir was associated with a significantly lower risk of HCC than entecavir in this large population of adults with chronic HBV infection,” said Dr Terry Yip from The Chinese University of Hong Kong, China... “Although we recognize the inherent limitations of observational data, our findings are consistent with those of the Korean group.”

In a study involving >29,000 individuals with CHB, the risk of HCC is at least one-third lower in subjects treated with TDF than those treated with ETV



<https://ilc-congress.eu/press-release/tenofovir-associated-with-a-lower-risk-of-hepatocellular-carcinoma-than-entecavir-in-large-hepatitis-b-study/> April 13, 2019


<https://easl.meta-dcr.com/ilc2019/crs/tenofovir-treatment-has-lower-risk-of-hepatocellular-carcinoma-than-entecavir-treatment-in-patients-with-chronic-hepatitis-b>

# A Hong Kong Territory-wide cohort study

- To compare TDF and ETV treatment on the risk of HCC in a territory-wide cohort of CHB patients in Hong Kong.



# 29,350 patients were included in the analysis

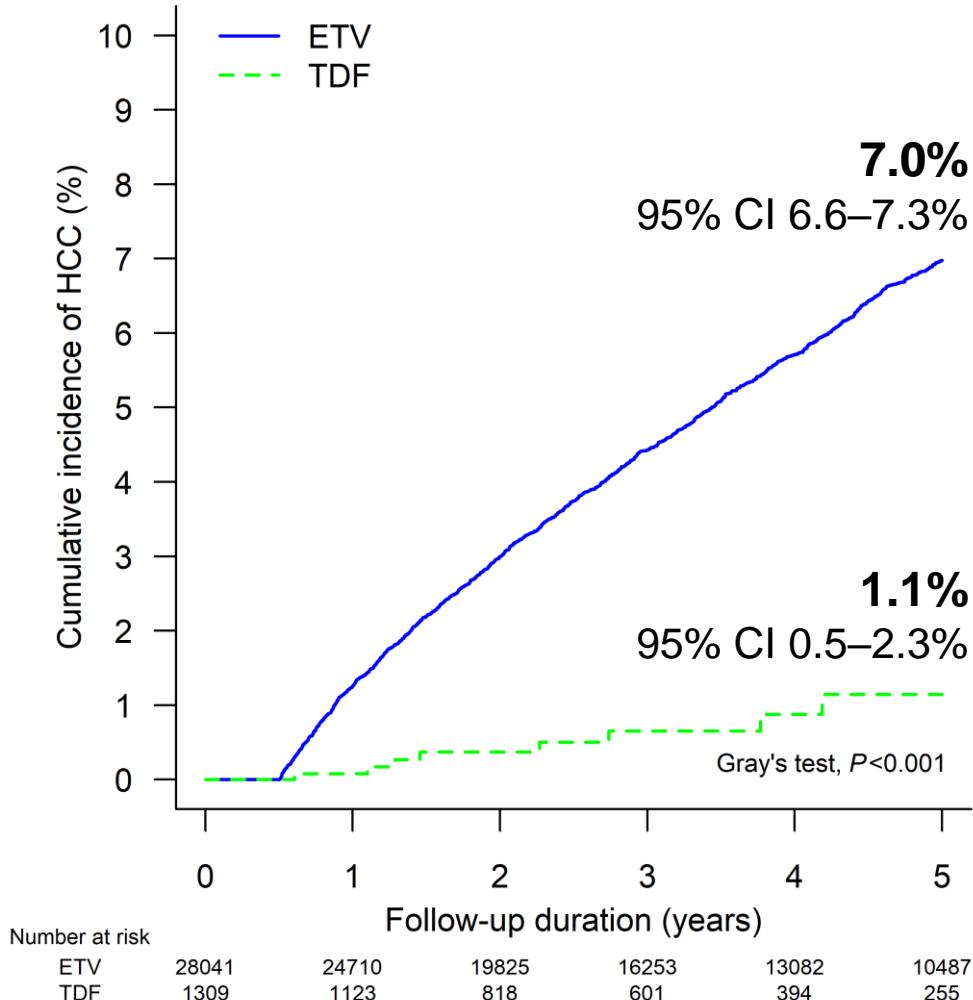


# More TDF-treated patients were younger, female and without cirrhosis

| Baseline clinical characteristics | ETV<br>N=28,041 | TDF<br>N=1,309 |
|-----------------------------------|-----------------|----------------|
| Age (years)                       | 53              | 43             |
| Male sex (n, %)                   | 65%             | 45%            |
| Cirrhosis (n, %)                  | 13.6%           | 2.9%           |
| Diabetes mellitus (n, %)          | 23%             | 7%             |
| Hypertension (n, %)               | 39%             | 14%            |
| HBeAg+ (n, %)                     | 30%             | 55%            |
| HBV DNA (log IU/mL)               | 5.3             | 4.8            |
| Platelet (x10 <sup>9</sup> /L)    | 183             | 205            |
| Albumin (g/L)                     | 40              | 42             |
| ALT (U/L)                         | 62              | 43             |
| Total bilirubin (μmol/L)          | 20              | 16             |
| Creatinine (μmol/L)               | 85              | 71             |
| Follow-up duration (years)        | 3.7             | 2.8            |

Result from a single imputation data set.

Yip TC... Wong GL. ILC 2019 LB-03  
Yip TC...Wong GL. *Gastroenterology*. 2020


# Patients who received TDF had milder fibrosis / cirrhosis, and a lower risk of HCC at baseline

| Baseline clinical characteristics | ETV<br>N=28,041 | TDF<br>N=1,309 |
|-----------------------------------|-----------------|----------------|
| APRI score *                      | 0.7             | 0.4            |
| FIB-4 score *                     | 1.8             | 1.1            |
| Child-Pugh class (n, %)           |                 |                |
| A                                 | 25,335 (90)     | 1,255 (96)     |
| B                                 | 2,533 (9)       | 49 (4)         |
| C                                 | 173 (0.6)       | 5 (0.4)        |
| CU-HCC score                      | 7               | 4              |
| GAG-HCC score                     | 82              | 64             |
| PAGE-B score                      | 14              | 8              |
| REACH-B score                     | 11              | 8              |

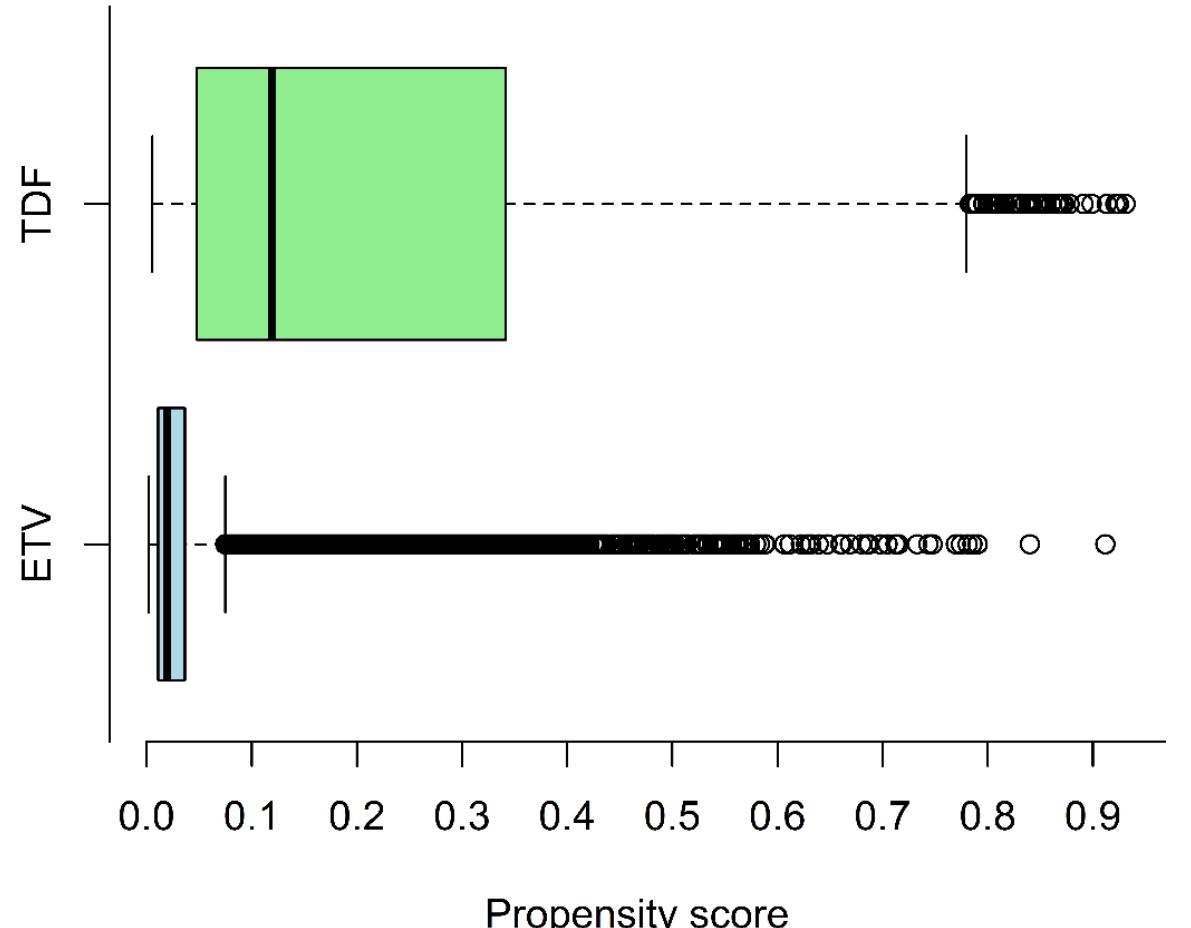
Result from a single imputation data set. Data represented as median except Child-Pugh class.

\* Among patients (51%) with available AST measurement. Baseline AST was not imputed.

# TDF-treated patients have a lower risk of HCC than ETV-treated patients



| Parameters       | Univariate analysis <sup>\$</sup> |           | Multivariable analysis <sup>†</sup> |           |
|------------------|-----------------------------------|-----------|-------------------------------------|-----------|
|                  | SHR                               | 95% CI    | Adjusted SHR                        | 95% CI    |
| TDF vs. ETV      | 0.15                              | 0.07–0.29 | 0.33                                | 0.16–0.67 |
| Age              | 1.06                              | 1.06–1.06 | 1.05                                | 1.04–1.05 |
| Male sex         | 2.16                              | 1.90–2.47 | 2.39                                | 2.08–2.73 |
| Cirrhosis        | 7.06                              | 6.35–7.84 | 3.21                                | 2.80–3.68 |
| Hypertension     | 2.71                              | 2.42–3.02 | —                                   | —         |
| Platelet*        | 0.36                              | 0.32–0.40 | 0.59                                | 0.53–0.65 |
| Albumin          | 0.91                              | 0.91–0.92 | 0.98                                | 0.97–0.99 |
| ALT*             | 0.80                              | 0.77–0.84 | 0.89                                | 0.85–0.93 |
| Total bilirubin* | 1.48                              | 1.41–1.56 | —                                   | —         |
| HBeAg+           | 0.81                              | 0.73–0.93 | 1.42                                | 1.24–1.64 |


\*Log-transformed in the model; † $P$ -value = 0.002 for TDF vs. ETV. All other  $P$ -values  $< 0.001$

\$  $P$ -value = 0.003 for HBeAg+. All other  $P$ -values  $< 0.001$ . SHR = subdistribution hazard ratio

# Propensity score estimation

| Categories                  | Parameters                                |
|-----------------------------|-------------------------------------------|
| Demographics                | Age                                       |
|                             | Sex                                       |
| Virological markers         | HBeAg positivity                          |
|                             | Serum HBV DNA levels*                     |
| Liver function              | ALT*                                      |
|                             | Albumin                                   |
|                             | Total bilirubin*                          |
|                             | INR                                       |
|                             | Platelet*                                 |
| Renal function              | Creatinine*                               |
|                             | Renal replacement therapy                 |
| Cirrhosis and complications | Cirrhosis                                 |
|                             | Ascites                                   |
|                             | Hepatic encephalopathy                    |
| Comorbidities               | Diabetes mellitus                         |
|                             | Hypertension                              |
| Treatment initialization    | Calendar year of treatment initialization |

\*Log-transformed in the model



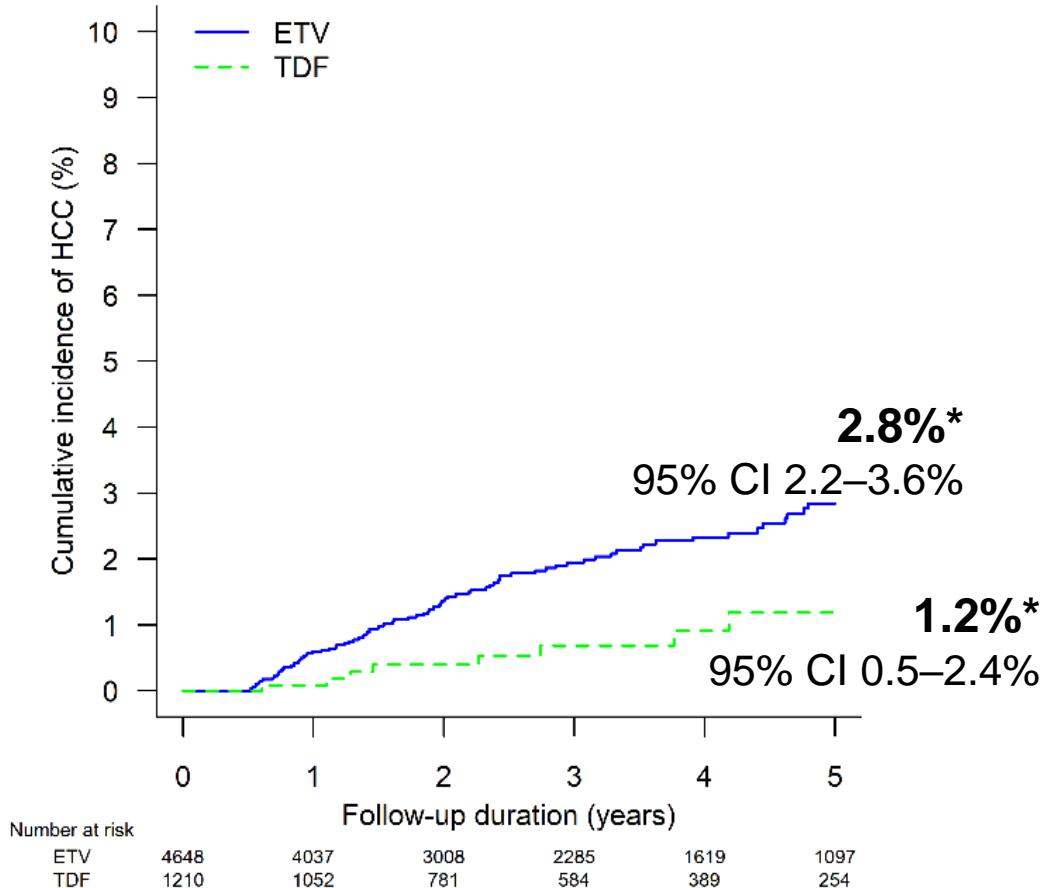
# Patients' clinical characteristics were balanced after PS weighting

| Baseline clinical characteristics | Before PS weighting                                               |      | After PS weighting |  | Absolute standardized difference* |
|-----------------------------------|-------------------------------------------------------------------|------|--------------------|--|-----------------------------------|
|                                   | ETV                                                               | TDF  | ETV                |  |                                   |
| Age (years)                       | 53                                                                | 43   | 44                 |  | 0.05                              |
| Male sex (%)                      | 65%                                                               | 45%  | 47%                |  | 0.04                              |
| Cirrhosis (%)                     | 13.6%                                                             | 2.9% | 4.6%               |  | 0.09                              |
| Diabetes mellitus (%)             | 23%                                                               | 7%   | 9%                 |  | 0.08                              |
| Hypertension (%)                  | Absolute standardized difference below 0.1 indicated good balance |      |                    |  | 0.07                              |
| HBeAg+ (%)                        | 30%                                                               | 55%  | 52%                |  | 0.06                              |
| HBV DNA (log IU/mL)               | 5.3                                                               | 4.8  | 4.8                |  | 0.02                              |
| Platelet (x10 <sup>9</sup> /L)    | 183                                                               | 205  | 205                |  | 0.05                              |
| Albumin (g/L)                     | 40                                                                | 42   | 42                 |  | 0.02                              |
| ALT (U/L)                         | 62                                                                | 43   | 44                 |  | 0.002                             |
| Total bilirubin (μmol/L)          | 20                                                                | 16   | 15                 |  | 0.04                              |
| Creatinine (μmol/L)               | 85                                                                | 71   | 74                 |  | 0.07                              |
| Follow-up duration (years)        | 3.7                                                               | 2.8  | 2.8                |  | —                                 |

Result from a single imputation data set. \* Absolute standardized difference below 0.1 indicated good balance.

Data were represented as mean unless specified. ALT and FU duration were represented as median.

# Patients' clinical characteristics were balanced after PS weighting


## Parameters that were not included in the propensity score

| Baseline parameters  | Before PS weighting |      | After PS weighting |
|----------------------|---------------------|------|--------------------|
|                      | ETV                 | TDF  | ETV                |
| APRI score *         | 0.7                 | 0.4  | 0.5                |
| FIB-4 score *        | 1.8                 | 1.1  | 1.1                |
| Child-Pugh class (%) |                     |      |                    |
| A                    | 90%                 | 96%  | 95%                |
| B                    | 9%                  | 4%   | 5%                 |
| C                    | 0.6%                | 0.4% | 0.3%               |
| CU-HCC score         | 7                   | 4    | 4                  |
| GAG-HCC score        | 82                  | 64   | 66                 |
| PAGE-B score         | 14                  | 8    | 10                 |
| REACH-B score        | 11                  | 8    | 8                  |

Result from a single imputation data set. Data were represented as median unless specified.

\* Among patients (51%) with available AST measurement. Baseline AST was not imputed.

# TDF-treated patients have a lower risk of HCC than ETV-treated patients in PS weighting analysis



## In cohort after PS weighting

| Parameters  | Propensity score weighting analysis |           |         |
|-------------|-------------------------------------|-----------|---------|
|             | SHR                                 | 95% CI    | P value |
| TDF vs. ETV | 0.36                                | 0.16–0.80 | 0.013   |

## In cohort before PS weighting

| Parameters  | Multivariable analysis |           |         |
|-------------|------------------------|-----------|---------|
|             | SHR                    | 95% CI    | P value |
| TDF vs. ETV | 0.33                   | 0.16–0.67 | 0.016   |

\*Result from a single imputation data set.

Cumulative incidence estimated by Kaplan-Meier method in the PS-weighted cohort.

SHR = subdistribution hazard ratio

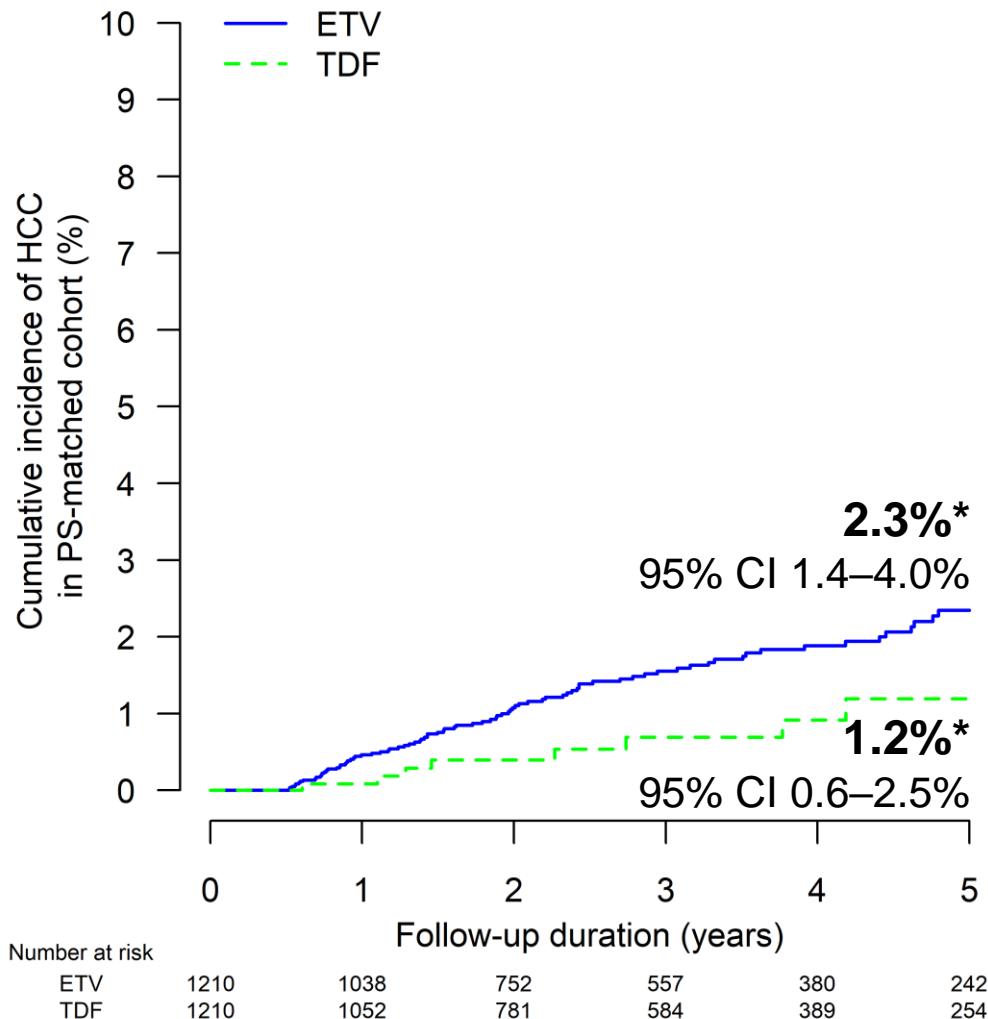
Yip TC... Wong GL. ILC 2019 LB-03

Yip TC... Wong GL. *Gastroenterology*. 2020

# 1-year HBV DNA suppression and ALT normalization rate

## In PS-weighted cohort<sup>†</sup>

| At 1 year                          | ETV | TDF |
|------------------------------------|-----|-----|
| HBV DNA suppression (%)            | 72% | 75% |
| ALT normalization (%) <sup>*</sup> | 69% | 58% |
| HBeAg seroclearance (%)            | 22% | 19% |


After adjusting for HBV DNA suppression and ALT normalization at 1 year (N=17,712)

| Parameters          | Propensity score weighting analysis |           |         |
|---------------------|-------------------------------------|-----------|---------|
|                     | Weighted SHR                        | 95% CI    | P value |
| TDF vs. ETV         | 0.35                                | 0.12–0.98 | 0.045   |
| HBV DNA suppression | 2.23                                | 0.64–7.77 | 0.207   |
| ALT normalization*  | 0.47                                | 0.19–1.18 | 0.108   |

<sup>†</sup> Result from a single imputation data set.

\* ALT normalization was defined as ALT <35 U/L in males and <25 U/L in females.

# 1:5 PS matching analysis



\*Result from a single imputation data set.

Cumulative incidence estimated by Kaplan-Meier method in the PS-matched cohort.

SHR = subdistribution hazard ratio

| Parameters  | Propensity score matching analysis |           |         |
|-------------|------------------------------------|-----------|---------|
|             | SHR                                | 95% CI    | P value |
| TDF vs. ETV | 0.39                               | 0.18–0.84 | 0.016   |

| TDF-treated patients matched to ETV-treated patients (n, %)*   |             |
|----------------------------------------------------------------|-------------|
| 1:1                                                            | = 202 (17%) |
| 1:2                                                            | = 119 (10%) |
| 1:3                                                            | = 77 (6%)   |
| 1:4                                                            | = 83 (7%)   |
| 1:5                                                            | = 729 (60%) |
| Percentage of TDF-treated patients matched = 1,210/1,309 (92%) |             |

Yip TC... Wong GL. ILC 2019 LB-03

Yip TC... Wong GL. *Gastroenterology*. 2020

# Negative control outcomes

- A negative control outcome shares the same potential sources of bias with the primary outcome but cannot plausibly be related to the treatment of interest (e.g. use of TDF vs. ETV on the risk of lung cancer).
- It is used in observational studies to detect unmeasured confounding.
- The finding of **no association** between treatment and the negative control outcome provides additional support for **no obvious residual bias from unmeasured confounding**.

## VIEWPOINT

### Negative Control Outcomes

#### A Tool to Detect Bias in Randomized Trials

Benjamin F. Arnold,  
PhD  
Division of  
Epidemiology, School  
of Public Health,  
University of California-  
Berkeley.

Ayse Erkmen, PhD  
Division of  
Epidemiology, School  
of Public Health,  
University of California-  
Berkeley.

**Investigators** have several design, measurement, and analytic tools to detect and reduce bias in epidemiological studies. One such approach, "negative controls," has been used on an ad hoc basis for decades. A formal approach has recently been suggested for its use to detect confounding, selection, and measurement bias in epidemiological studies.<sup>1,2</sup> Negative controls in epidemiological studies are analogous to negative controls in laboratory experiments, in which investigators test for problems with the experimental method by leaving out an essential ingredient, inactivating the hypothesized active ingredient, or checking for an effect that would be impossible by the hypothesized mechanism.<sup>3</sup> A placebo

vational studies to detect unmeasured confounding.<sup>4,5</sup> With sufficient sample size and proper allocation, randomized trials are protected from confounding bias when estimating an intention-to-treat effect; however, confounding, selection, and measurement bias can still threaten the validity of trials in many circumstances that regularly occur. For example, even masked trials with a placebo control can be vulnerable to bias if the treatment has adverse effects (leading to selection bias from differential attrition or measurement bias from unblinding participants or practitioners). In this Viewpoint, we suggest that negative control outcomes can be a valuable addition to detect residual bias in randomized trials.

# Two negative control outcomes chosen

## Lung cancer

| Parameters  | Propensity score weighting analysis |           |         |
|-------------|-------------------------------------|-----------|---------|
|             | Weighted SHR                        | 95% CI    | P value |
| TDF vs. ETV | 0.78                                | 0.21–2.93 | 0.711   |

## Acute myocardial infarction

| Parameters  | Propensity score weighting analysis |           |         |
|-------------|-------------------------------------|-----------|---------|
|             | Weighted SHR                        | 95% CI    | P value |
| TDF vs. ETV | 1.44                                | 0.31–6.73 | 0.644   |

Negative control outcome analysis supports no obvious residual bias on unmeasured confounding.

# Summary of Hong Kong Territory-wide cohort study

- TDF treatment is associated with a lower risk of HCC than ETV treatment in a territory-wide cohort of CHB patients in Hong Kong.
- The association remains robust in PS weighting, PS matching and negative control outcome analysis.

# Three key studies comparing TDF vs ETV

|                              | Choi et al                                     | Kim et al                                                     | Yip et al                       |
|------------------------------|------------------------------------------------|---------------------------------------------------------------|---------------------------------|
| Patient sources              | Nationwide + Hospital                          | 4 Hospitals                                                   | Territory-wide                  |
| No. of patients<br>(TDF:ETV) | 10,923:10,923<br>869:869                       | 1,278:1,278                                                   | 1,309:28,401                    |
| Cirrhosis                    | 58% / 24.1%; decomp                            | 31%; no decomp                                                | 2.9% vs 13.6%/4.6%              |
| No. of HCC                   | 984 / 154                                      | 240                                                           | 8 vs 1,386                      |
| HCC incidence                | 0.66 vs 1.07 / 100 PY<br>1.37 vs 2.17 / 100 PY | 1.69 vs 1.92<br>per 100 PY<br>5-yr incidence:<br>7.9% vs 8.7% | 5-yr incidence:<br>2.8% vs 1.2% |

Choi J, et al. JAMA Oncol 2019; Kim SU, et al. J Hepatol 2019  
 Yip TC... Wong GL. ILC 2019 LB-03; Yip TC...Wong GL. Gastroenterology. 2020

# Trend of HCC risk reduction with TDF in Asian patient vs ETV

Longitudinal data from the Chronic Hepatitis Cohort Study (CHeCS), a US-based cohort that includes both Asian and non-Asian patients  
 CHeCS CHB patients that initiated TDF or ETV during 2005-2017 were included, after excluding patients with a history of:

- Liver transplant
- HIV co-infection
- Treatment with both TDF and ETV

Among the 822 patients, 40% were Asian. The adjusted hazard ratio for the incidence of HCC and all-cause mortality

Asian: aHR 0.70 (0.29-1.68)

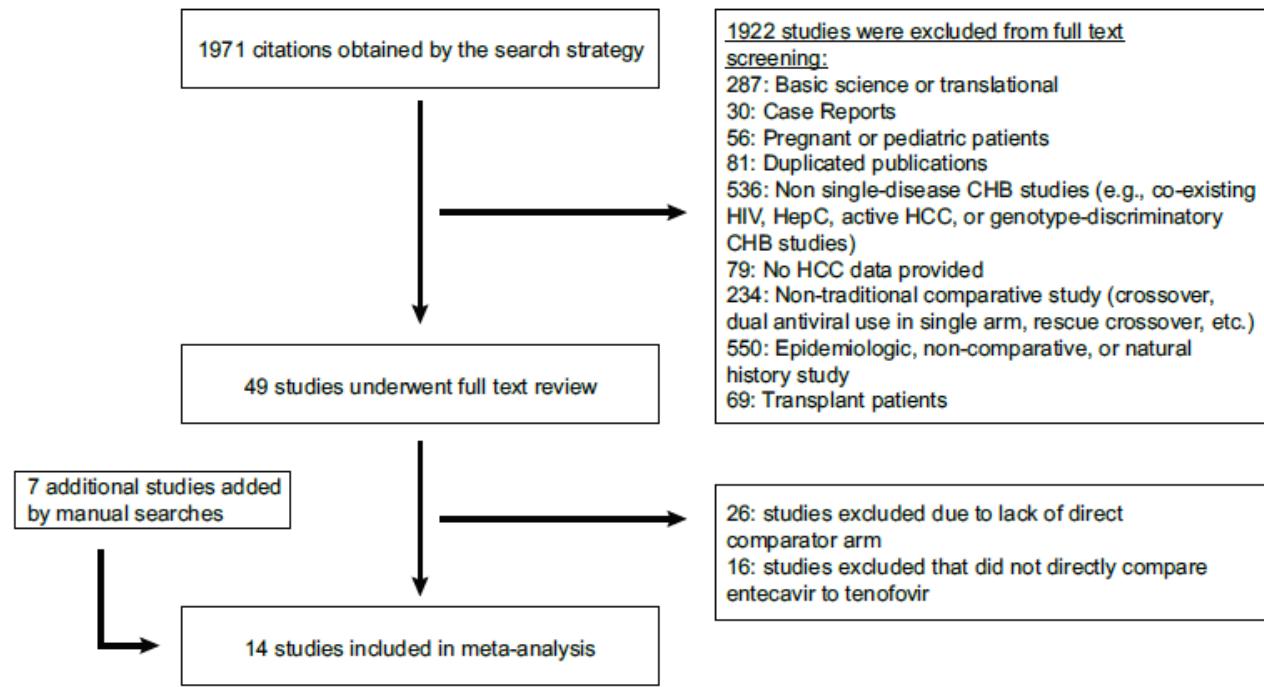
Non-Asian: aHR 1.87 (0.60-5.87)

Racial difference?

| Number of subjects                     | 822           | 822           |
|----------------------------------------|---------------|---------------|
| <b>Baseline characteristics</b>        |               |               |
| Age in years, mean (SD)                |               |               |
| Male                                   | 53%           | 53%           |
| Race                                   |               |               |
| Asian/Pacific Islander/Native American | 63%           | 100%          |
| Black/African American                 | 11%           |               |
| White                                  | 26%           |               |
| Cirrhotic                              | 18%           | 27%           |
| Prior treatment naïve                  | 80%           | 100%          |
| Treated with ETV/TDF                   | 50.5% / 49.5% | 47.5% / 52.5% |
| <b>Follow-up and clinical outcomes</b> |               |               |
| Median follow-up (yrs)                 | 3.2           | 3.6           |
| Hepatocellular cancer (HCC)            | 31 (3.8%)     | 984 (4.1%)    |
| All-cause deaths                       | 115 (14.0%)   |               |
| Death or liver transplant              |               | 509 (2.1%)    |

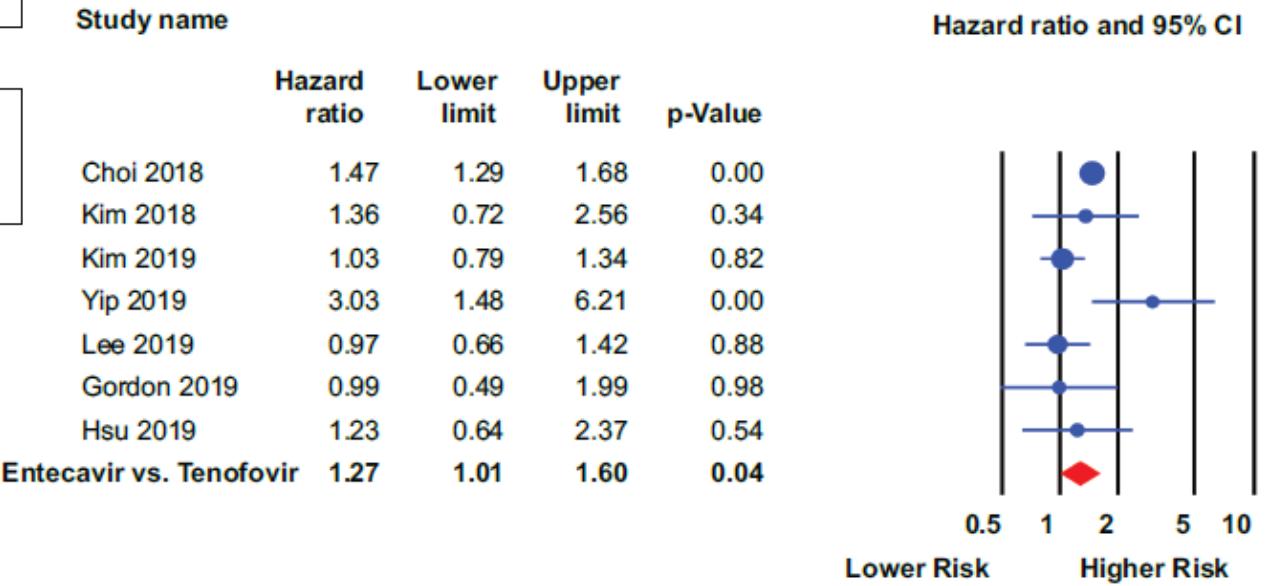
| CHeCS and Choi et al. studies                                       |                     |                   |
|---------------------------------------------------------------------|---------------------|-------------------|
|                                                                     | All-cause mortality |                   |
|                                                                     | HR (95% CI*)        | p-value           |
| TDF vs ETV Asian                                                    | 0.70 (0.29, 1.68)   | 0.17              |
| TDF vs ETV Non-Asian                                                | 1.87 (0.60, 5.87)   | 0.30              |
| <b>CHeCS treatment naïve subgroup: Treatment x Race interaction</b> |                     |                   |
| TDF vs ETV Asian                                                    | 0.73 (0.29, 1.84)   | 0.86 (0.48, 1.53) |
| TDF vs ETV Non-Asian                                                | 1.21 (0.37, 3.98)   | 1.25 (0.81, 1.92) |
| <b>Choi et al (national cohort)</b>                                 | 0.61 (0.54, 0.70)   | 0.50              |
|                                                                     | <0.01               | 0.58              |
|                                                                     | n/a                 | 0.94 (0.51, 1.73) |
|                                                                     | n/a                 | 1.17 (0.72, 1.90) |

Risk of HCC among patients treated with TDF compared to those treated ETV may vary with race. Among Asian patients, an adjusted hazard ratio=0.70 (TDF vs. ETV) suggests a trend toward HCC reduction, a consistent finding with the Choi findings.

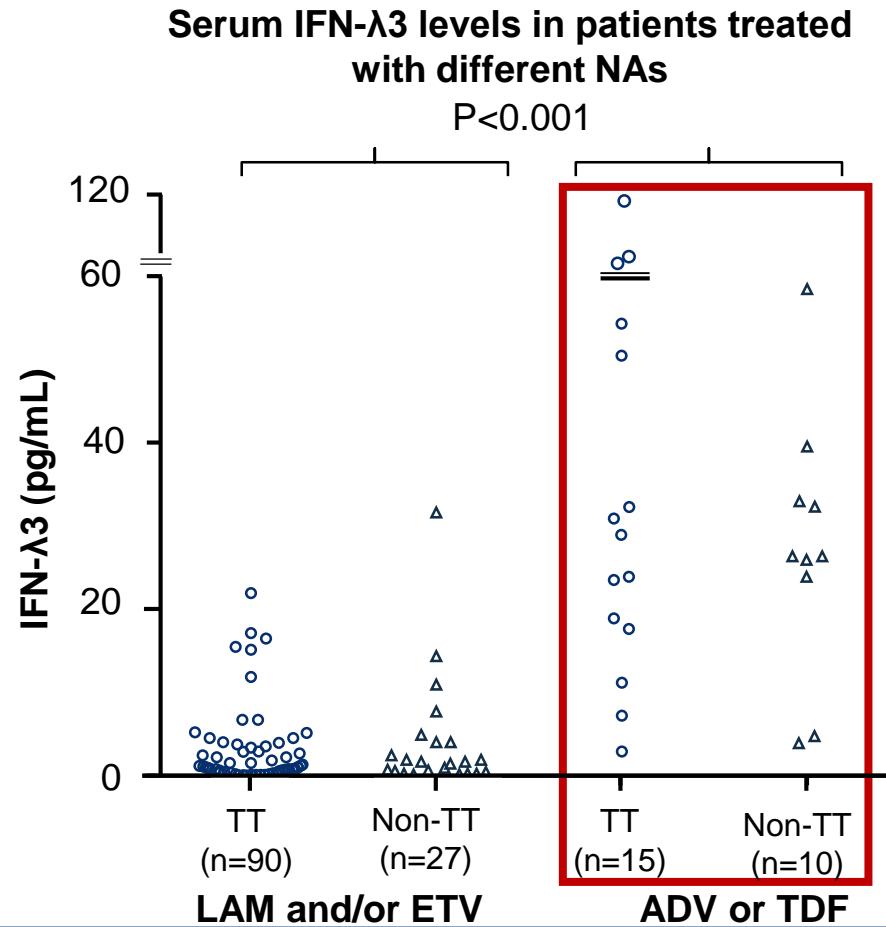

# Summary of some key studies comparing HCC risk with TDF vs ETV

| Study          | Regions / Countries | Study Type                 | N (% Male)                         | Age, years                             | FU, months                                      | No. (%) of HCC and HR of TDF vs. ETV                                                                |
|----------------|---------------------|----------------------------|------------------------------------|----------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Liaw 2011      | Multi-continents    | Phase 2, double-blind, RCT | TDF: 45 (82.2)<br>ETV: 22 (77.3)   | 52 (48-57)<br>54 (47-58)               | 48 weeks<br>48 weeks                            | TDF = 3 (6.7%) vs.<br>ETV = 1 (4.5%);<br>HR, N.A.                                                   |
| Koklu 2013     | Turkey              | Observational              | TDF 72 (75.0)<br>ETV: 77 (77.9)    | 54.2 ± 10.5<br>52.4 ± 11.2             | 21.4 ± 9.7<br>24.0 ± 13.3                       | TDF = 2 (2.8%) vs.<br>ETV = 4 (5.2%);<br>HR, 0.60; 95% CI, 0.11-3.28                                |
| Batirol 2014   | Turkey              | Observational              | TDF: 90 (65.6)<br>ETV: 105 (78.1)  | 43.3 ± 12.9<br>42.0 ± 11.2             | 27.2 ± 15.4<br>33.0 ± 15.4                      | TDF = 0 vs. ETV = 0<br>HR, N.A.                                                                     |
| Goyal 2015     | India               | Observational              | TDF: 220<br>ETV: 180               | 47.3 (24-65)<br>48.1 (26-65)           | 45 (12-68)<br>36 (11-60)                        | TDF = 6 (2.7%) vs.<br>ETV = 4 (2.2%);<br>HR, 0.49; 95% CI, 0.14-1.72                                |
| Wu 2017        | Taiwan              | Observational              | TDF: 106 (69.8)<br>ETV: 313 (73.5) | 47.1 ± 12.1<br>47.0 ± 12.3             | 37.9 ± 7.2<br>49 ± 19.1                         | TDF = 7.7% at 48 months vs.<br>ETV = 6.7% at 48 months<br>HR, 0.73; 95% CI, 0.26-2.05               |
| Kayaaslan 2018 | Turkey              | Observational              | TDF: 86 (55.8)<br>ETV: 166 (71.0)  | 42 (range, 18-71)<br>43 (range, 18-81) | 18 (range, 12-72)<br>48 (range, 12-72)          | TDF = 0 vs. ETV = 0<br>HR, N.A.                                                                     |
| Kim 2018       | South Korea         | Observational              | TDF: 112 (62.5)<br>ETV: 191 (60.7) | 49.3 ± 10.9<br>47.7 ± 12.3             | 38.5 ± 9.2<br>66.6 ± 26.8                       | TDF = 3 (2.7%) vs.<br>ETV = 13 (6.8%);<br>HR, 0.67; 95% CI, 0.19-2.35                               |
| Yu 2018        | South Korea         | Observational              | TDF: 176 (59.1)<br>ETV: 406 (67.0) | 49 (range 20-84)<br>53 (range 18-84)   | 33.6 (range, 6.3-60.5)<br>69.9 (range, 6-119.4) | TDF = 7 (4.0%) vs.<br>ETV = 31 (7.6%);<br>HR, 1.39; 95% CI, 0.56-3.45                               |
| Kim 2018       | South Korea         | Observational              | TDF: 604 (60.1)<br>ETV: 721 (65.3) | 50 ± 11<br>52 ± 11                     | 33 (21-46)<br>66 (36-88)                        | TDF = 14 (2.3%) vs. ETV = 40 (5.5%);<br>HR, 0.74; 95% CI, 0.39-1.39<br>aHR, 0.60; 95% CI, 0.28-1.30 |

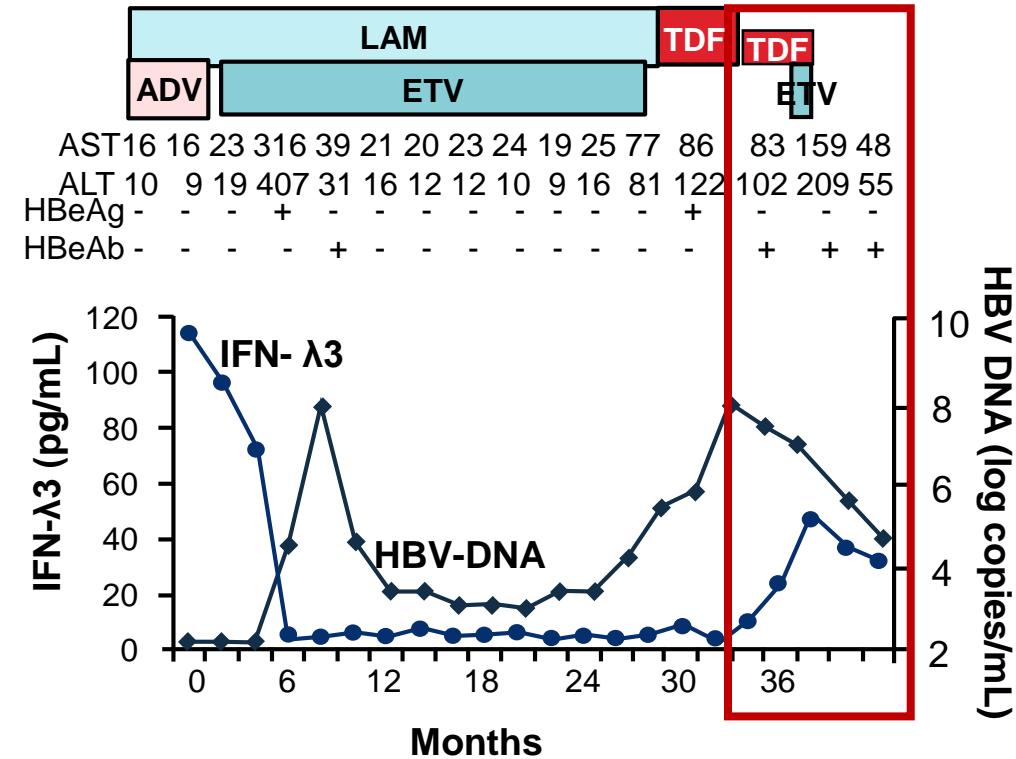
# Summary of some key studies comparing HCC risk with TDF vs ETV


| Study       | Regions / Countries | Study Type    | N (% Male)                            | Age, years                           | FU, months                         | No. (%) of HCC and HR of TDF vs. ETV                                                                                         |
|-------------|---------------------|---------------|---------------------------------------|--------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Choi 2019   | South Korea         | Observational | TDF: 1141 (60.6)<br>ETV: 1560 (61.9)  | 48.1 ± 10.5<br>49.2 ± 10.5           | 32.0 (23-40)<br>48.0 (36-48)       | TDF = 39 (3.4%) vs. ETV = 115 (7.4%);<br>HR, 0.64; 95% CI, 0.45-0.93;<br>aHR, 0.66; 95% CI, 0.46-0.96                        |
| Cai 2019    | China               | RCT           | TDF: 157 (75.8)<br>ETV: 158 (76.6)    | 30.8 ± 8.8<br>31.0 ± 8.4             | 36<br>36                           | TDF = 0 vs. ETV = 0<br>HR, N.A.                                                                                              |
| Kim 2019    | South Korea         | Observational | TDF: 1413 (64.6)<br>ETV: 1484 (59.9)  | 48.8 ± 12.0<br>48.2 ± 11.5           | N.A.<br>N.A.                       | TDF = 102 (7.2%) vs. ETV = 138 (9.3%);<br>aHR, 0.98; 95% CI, 0.75-1.27                                                       |
| Gordon 2019 | United States       | Observational | TDF: 407<br>ETV: 415                  | 48<br>51                             | 48<br>66                           | TDF = 13 (3.2%) vs. ETV = 18 (4.3%);<br>aHR for Asian, 0.70; 95% CI, 0.29-1.68<br>aHR for Non-Asian, 1.87; 95% CI, 0.60-5.87 |
| Yip 2020    | Hong Kong           | Observational | TDF: 1309 (45.1)<br>ETV: 28041 (64.5) | 43.2 ± 13.1<br>53.4 ± 13.0           | 33.6 (16.8-54)<br>44.4 (20.4-60)   | TDF = 13 (1.9%) vs. ETV = 285 (5.9%);<br>aHR, 0.36; 95% CI, 0.16-0.80                                                        |
| Hsu 2019    | Multi-continents    | Observational | DF: 700 (65.1)<br>ETV: 4837 (68.8)    | 45.7 ± 0.5<br>50.2 ± 0.2             | 38.7 (23.8-56.2)<br>60 (39.6-60)   | TDF = 13 (1.9%) vs. ETV = 285 (5.9%);<br>aHR, 0.81; 95% CI, 0.42-1.56                                                        |
| Lee 2019    | South Korea         | Observational | TDF: 1439 (58.4)<br>ETV: 1583 (58.5)  | 47.3 ± 11.2<br>46.7 ± 11.8           | 36.4 (N.A.-N.A.)<br>60 (N.A.-N.A.) | TDF = 50 (3.5%) vs. ETV = 84 (5.3%);<br>aHR, 0.97; 95% CI, 0.68-1.4                                                          |
| Kim 2019    | United States       | Observational | TDF: 5903 (56.0)<br>ETV: 3819 (63.1)  | N.A.<br>N.A.                         | 17.9 (7.9-34.7)<br>17.0 (8.0-32.2) | TDF = 39 (0.7%) vs. ETV = 46 (1.2%);<br>aHR, 0.61; 95% CI, 0.39-0.94                                                         |
| Lee 2019    | Taiwan              | Observational | TDF: 288 (61.8)<br>ETV: 452 (65.7)    | 54.1 (24.0-94.1)<br>53.0 (23.4-89.7) | 33.6 (8.4-124.8)<br>37.2 (6-145.2) | TDF = 8 (2.8%) vs. ETV = 31 (6.9%);<br>HR, 0.86; 95% CI, 0.39-1.91                                                           |

# ETV vs TDF in HCC risk: A Systematic Review and Meta-analysis




Adjusted data (multivariate or propensity-matched data), HCC risk in ETV-treated patients  
27% higher than TDF-treated patients  
(7 studies; 95% CI, 1.01-1.60,  $p=0.04$ )


## Risk of HCC in CHB patients - Entecavir vs. Tenofovir, Adjusted Analysis



# Possible mechanism: variable induction of IFN-lambda expression by different antivirals



Serum IFN-λ3 levels in a 78-year old man treated with different NAs



TDF, but not ETV, induces IFN-λ3 expression. IFN-λ directly inhibits the replication of HBV and induces ISGs, which contribute to inhibition of viral mRNA translation, as well as to RNA degradation and synthesis in cell lines

IFN: interferon; ISG: IFN-stimulated genes; TT: major homozygous genotype of IL-28B



香港中文大學  
The Chinese University of Hong Kong

Does antiviral therapy reduce HCC  
in chronic hepatitis B?

Yes!

Is one NA better than the other?  
**TDF is likely associated  
with lower risk of HCC  
compared to ETV**



## Future studies

### Biochemical basis

- ALT normalization

### Virological basis

- HBV DNA suppression
- HBeAg seroclearance
- HBsAg level reduction
- cccDNA or transcriptional activity of HBV
- Serum HBcrAg / HBV RNA levels